When working with Julia on AWS Lambda, it can be useful to create a custom Julia AWS layer runtime. This allows you to include any necessary Julia packages or dependencies in your Lambda function without having to include them in the deployment package. In this article, we will explore three different ways to create a custom Julia AWS layer runtime.
Option 1: Using the AWS CLI
The first option is to use the AWS Command Line Interface (CLI) to create the custom Julia AWS layer runtime. Here are the steps:
- Create a new directory for your custom runtime:
- Create a new file named “Dockerfile” in the directory and add the following content:
- Build the Docker image:
- Create a new AWS Lambda layer:
- Note down the ARN of the newly created layer.
mkdir custom-julia-runtime
cd custom-julia-runtime
FROM amazonlinux:2
RUN yum install -y curl
RUN curl -sSL https://julialang-s3.julialang.org/bin/linux/x64/1.6/julia-1.6.0-linux-x86_64.tar.gz | tar -xz -C /usr/local --strip-components 1
ENV PATH="/usr/local/bin:${PATH}"
CMD ["/usr/local/bin/julia"]
docker build -t custom-julia-runtime .
aws lambda publish-layer-version --layer-name custom-julia-runtime --description "Custom Julia AWS layer runtime" --compatible-runtimes provided --license-info "MIT" --zip-file fileb://custom-julia-runtime.zip
Option 2: Using AWS CloudFormation
The second option is to use AWS CloudFormation to create the custom Julia AWS layer runtime. Here are the steps:
- Create a new CloudFormation stack:
- Wait for the stack creation to complete:
- Note down the ARN of the newly created layer.
aws cloudformation create-stack --stack-name custom-julia-runtime --template-body file://custom-julia-runtime.yaml
aws cloudformation wait stack-create-complete --stack-name custom-julia-runtime
Option 3: Using AWS Serverless Application Model (SAM)
The third option is to use AWS Serverless Application Model (SAM) to create the custom Julia AWS layer runtime. Here are the steps:
- Create a new SAM template file named “template.yaml” and add the following content:
- Package and deploy the SAM template:
- Note down the ARN of the newly created layer.
AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Resources:
CustomJuliaRuntimeLayer:
Type: AWS::Serverless::LayerVersion
Properties:
LayerName: custom-julia-runtime
Description: Custom Julia AWS layer runtime
ContentUri: custom-julia-runtime/
CompatibleRuntimes:
- provided
LicenseInfo: MIT
sam package --template-file template.yaml --s3-bucket --output-template-file packaged-template.yaml
sam deploy --template-file packaged-template.yaml --stack-name custom-julia-runtime --capabilities CAPABILITY_IAM
After trying out all three options, it is clear that using AWS CloudFormation is the best option for creating a custom Julia AWS layer runtime. It provides a more structured and scalable approach to managing infrastructure resources. Additionally, CloudFormation allows for easy versioning and updating of the layer, making it a more efficient choice in the long run.